python

超轻量级php框架startmvc

python实现朴素贝叶斯分类器

更新时间:2020-05-25 20:48 作者:startmvc
本文用的是sciki-learn库的iris数据集进行测试。用的模型也是最简单的,就是用贝叶斯定理P(A

本文用的是sciki-learn库的iris数据集进行测试。用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量)

以及每个类下每个特征的概率(代码中是pNum变量)。

写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量。

有什么错误有人发现麻烦提出,谢谢。


[python] view plain copy
# -*- coding:utf-8 -*- 
from numpy import * 
from sklearn import datasets 
import numpy as np 
 
class NaiveBayesClassifier(object): 
 
 def __init__(self): 
 self.dataMat = list() 
 self.labelMat = list() 
 self.pLabel = {} 
 self.pNum = {} 
 
 def loadDataSet(self): 
 iris = datasets.load_iris() 
 self.dataMat = iris.data 
 self.labelMat = iris.target 
 labelSet = set(iris.target) 
 labelList = [i for i in labelSet] 
 labelNum = len(labelList) 
 for i in range(labelNum): 
 self.pLabel.setdefault(labelList[i]) 
 self.pLabel[labelList[i]] = np.sum(self.labelMat==labelList[i])/float(len(self.labelMat)) 
 
 def seperateByClass(self): 
 seperated = {} 
 for i in range(len(self.dataMat)): 
 vector = self.dataMat[i] 
 if self.labelMat[i] not in seperated: 
 seperated[self.labelMat[i]] = [] 
 seperated[self.labelMat[i]].append(vector) 
 return seperated 
 
 # 通过numpy array二维数组来获取每一维每种数的概率 
 def getProbByArray(self, data): 
 prob = {} 
 for i in range(len(data[0])): 
 if i not in prob: 
 prob[i] = {} 
 dataSetList = list(set(data[:, i])) 
 for j in dataSetList: 
 if j not in prob[i]: 
 prob[i][j] = 0 
 prob[i][j] = np.sum(data[:, i] == j) / float(len(data[:, i])) 
 prob[0] = [1 / float(len(data[:,0]))] # 防止feature不存在的情况 
 return prob 
 
 def train(self): 
 featureNum = len(self.dataMat[0]) 
 seperated = self.seperateByClass() 
 t_pNum = {} # 存储每个类别下每个特征每种情况出现的概率 
 for label, data in seperated.iteritems(): 
 if label not in t_pNum: 
 t_pNum[label] = {} 
 t_pNum[label] = self.getProbByArray(np.array(data)) 
 self.pNum = t_pNum 
 
 def classify(self, data): 
 label = 0 
 pTest = np.ones(3) 
 for i in self.pLabel: 
 for j in self.pNum[i]: 
 if data[j] not in self.pNum[i][j]: 
 pTest[i] *= self.pNum[i][0][0] 
 else: 
 pTest[i] *= self.pNum[i][j][data[j]] 
 pMax = np.max(pTest) 
 ind = np.where(pTest == pMax) 
 return ind[0][0] 
 
 def test(self): 
 self.loadDataSet() 
 self.train() 
 pred = [] 
 right = 0 
 for d in self.dataMat: 
 pred.append(self.classify(d)) 
 for i in range(len(self.labelMat)): 
 if pred[i] == self.labelMat[i]: 
 right += 1 
 print right / float(len(self.labelMat)) 
 
if __name__ == '__main__': 
 NB = NaiveBayesClassifier() 
 NB.test() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。