用TensorFlow实现lasso回归和岭回归算法的示例
也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是las
LASSO是由1996年Robert Tibshirani首次提出,全称Least absolute shrinkage and selection operator。该方法是一种压缩估计。它通过构造一个惩罚函数得到一个较为精炼的模型,使得它压缩一些回归系数,即强制系数绝对值之和小于某个固定值;同时设定一些回归系数为零。因此保留了子集收缩的优点,是一种处理具有复共线性数据的有偏估计。...
也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是las